PRIME: Phase Retrieval via Majorization-Minimization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Undersampled Phase Retrieval via Majorization-Minimization

In the undersampled phase retrieval problem, the goal is to recover an N -dimensional complex signal x from only M < N noisy intensity measurements without phase information. This problem has drawn a lot of attention to reduce the number of required measurements since a recent theory established that M ≈ 4N intensity measurements are necessary and sufficient to recover a generic signal x. In th...

متن کامل

Generalized Majorization-Minimization

Non-convex optimization is ubiquitous in machine learning. The MajorizationMinimization (MM) procedure systematically optimizes non-convex functions through an iterative construction and optimization of upper bounds on the objective function. The bound at each iteration is required to touch the objective function at the optimizer of the previous bound. We show that this touching constraint is u...

متن کامل

Majorization-Minimization for Manifold Embedding

Nonlinear dimensionality reduction by manifold embedding has become a popular and powerful approach both for visualization and as preprocessing for predictive tasks, but more efficient optimization algorithms are still crucially needed. MajorizationMinimization (MM) is a promising approach that monotonically decreases the cost function, but it remains unknown how to tightly majorize the manifol...

متن کامل

Distributed Majorization-Minimization for Laplacian Regularized Problems

We consider the problem of minimizing a block separable convex function (possibly nondifferentiable, and including constraints) plus Laplacian regularization, a problem that arises in applications including model fitting, regularizing stratified models, and multi-period portfolio optimization. We develop a distributed majorizationminimization method for this general problem, and derive a comple...

متن کامل

Composite Optimization by Nonconvex Majorization-Minimization

Many tasks in imaging can be modeled via the minimization of a nonconvex composite function. A popular class of algorithms for solving such problems are majorizationminimization techniques which iteratively approximate the composite nonconvex function by a majorizing function that is easy to minimize. Most techniques, e.g. gradient descent, utilize convex majorizers in order guarantee that the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 2016

ISSN: 1053-587X,1941-0476

DOI: 10.1109/tsp.2016.2585084